79 research outputs found

    Imaging of the human fundus in the clinical setting:past present and future

    Get PDF
    The human fundus is a complex structure that can be easily visualized and the world of ophthalmology is going through a golden era of new and exciting fundus imaging techniques; recent advances in technology have allowed a significant improvement in the imaging modalities clinicians have available to formulate a diagnostic and treatment plan for the patient, but there is constant on-going work to improve current technology and create new ideas in order to gather as much information as possible from the human fundus. In this article we shall summarize the imaging techniques available in the standard medical retina clinic (i.e. not limited to the research lab) and delineate the technologies that we believe will have a significant impact on the way clinicians will assess retinal and choroidal pathology in the not too distant future

    Dark energy in multi-fractional spacetimes

    Get PDF
    We study the possibility to obtain cosmological late-time acceleration from a geometry changing with the scale, in particular, in the so-called multifractional theories with qq-derivatives and with weighted derivatives. In the theory with qq-derivatives, the luminosity distance is the same as in general relativity and, therefore, geometry cannot act as dark energy. In the theory with weighted derivatives, geometry alone is able to sustain a late-time acceleration phase without fine tuning, while being compatible with structure-formation and big-bang nucleosynthesis bounds. This suggests to extend the theory, in a natural way, from just small-scale to also large-scale modifications of gravity. Surprisingly, the Hausdorff dimension of spacetime is constrained to be close to the topological dimension 4. After arguing that this finding might not be a numerical coincidence, we conclude that present-day acceleration could be regarded as the effect of a new restoration law for spacetime geometry.Comment: 17 pages, 7 figures, 2 tables. v2: discussion improved, results unchanged, typos correcte

    Investigating the potential of Zernike polynomials to characterise spatial distribution of macular pigment

    Get PDF
    It has been postulated that particular patterns of macular pigment (MP) distribution may be associated with the risk for eye diseases such as age-related macular degeneration (AMD). This work investigates the potential of Zernike polynomials (ZP) to characterise the level and distribution of MP, and their suitability as a representation for analysis of the effects of age and AMD on MP patterns. As the case study, MP distribution maps computed using an experimental method based on fundus reflectance (MRIA) were obtained for ninety volunteers representing three groups: under-fifty without AMD, fifty and over without AMD, and fifty and over with AMD. ZP with 105 coefficients were fitted to the maps using least-squares optimisation and found to represent MP maps accurately (RMSE<10-1). One-way MANOVA analysis carried out on ZP representations showed that the three subject groups have significantly different means (Wilk's Lambda 0.125, p<0.0001). Linear discriminant analysis with leave-one-out scheme resulted in accuracy, sensitivity and specificity of classification according to, respectively, disease status regardless of age (81% all); disease status in the age-matched groups (87%, 88%, 86%); age irrespective of disease status (81%, 83%, 73%); and age for subjects without AMD (83%, 88%, 80%). Mean MP distributions computed from ZP coefficients for the three groups showed more elevated and more peaked MP for the healthy under-fifty group; more irregular and more elevated peripheral levels in over-fifty AMD group than in over-fifty non-AMD group; and moderate radial asymmetry in non-AMD over-50 group. The results suggest that ZP coefficients are capable of accurately representing MP in a way that captures certain spatial patterns of its distribution. Using the ZP representation MP maps could be classified according to both age and disease status with accuracy significantly greater than chance, with peak elevation, pattern irregularity and radial asymmetry identified as important features

    Predicting social media addiction fromInstagram profiles: A data mining approach

    Get PDF
    In this short paper, we describe an application of data mining techniques to predict Instagram users’ addiction from a set of features related to (i) Instagram captions extracted from photos, videos, comments, and stories, and Instagram indicators such as number of followers and following, blocked and closed friends, and frequency of use. We first applied text mining to explore and describe the main contents of Instagram captions. Next, we used a set of non parametric models and ensemble methods to predict Instagram addiction as measured by the Instagram addiction scale [1]. Models were compared via cross-validation using test and training (random) sets from the original dataset. Results showed that Instagram addiction is mainly predicted by the overall time spent on Instagram, writing stories and comments, and number of followers. Moreover, the results suggest that Instagram users made use of photos/videos and stories/comments differently, with the latter being mostly related to emoticons, experiences, and relationships with other users

    Multispectral imaging of the ocular fundus using light emitting diode illumination

    Get PDF
    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration

    Colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration

    Get PDF
    Purpose: To generate the first published reference database of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration and to explore this important feature in quality of vision. Background: Quality of vision depends on many factors. Changes in chromatic contrast sensitivity remain largely unexplored in eyes at high risk of neovascular age-related macular degeneration; they may however not only be relevant for quality of life but also an early indicator of the onset of the disease, so it is important to have a means to evaluate any variation in colour contrast sensitivity, especially in view of the likely increase in neovascular age-related macular degeneration as the population ages. Methods: This prospective longitudinal study evaluated colour contrast sensitivity along the protan and tritan colour axes in 145 eyes at high risk of neovascular age-related macular degeneration. Results: Colour contrast sensitivity showed statistically significant correlations with age and visual acuity, but not gender nor laterality (i.e. whether the right or left eye was being tested). There was significant variability among individuals, especially for the tritan axis, with some subjects well within normal limits for age and others with very poor colour contrast sensitivity. Conclusion: This study has generated the first published colour contrast sensitivity reference database for eyes at high risk of neovascular age-related macular degeneration. It has also shown a high inter-individual variability of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration, but the significance of this is unclear. Further work is required to establish if eyes with high colour contrast sensitivity thresholds (i.e. poor colour vision) have a higher risk of developing neovascular age-related macular degeneration over time, and this is the subject of ongoing work

    Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models

    Full text link
    In the Horndeski's most general scalar-tensor theories with second-order field equations, we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar, tensor, and vector perturbations in the presence of two perfect fluids on the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Our general results are useful for the construction of theoretically consistent models of dark energy. We apply our formulas to extended Galileon models in which a tracker solution with an equation of state smaller than -1 is present. We clarify the allowed parameter space in which the ghosts and Laplacian instabilities are absent and we numerically confirm that such models are indeed cosmologically viable.Comment: 18 pages, 6 figure

    Strong coupling in Horava gravity

    Get PDF
    By studying perturbations about the vacuum, we show that Horava gravity suffers from two different strong coupling problems, extending all the way into the deep infra-red. The first of these is associated with the principle of detailed balance and explains why solutions to General Relativity are typically not recovered in models that preserve this structure. The second of these occurs even without detailed balance and is associated with the breaking of diffeomorphism invariance, required for anisotropic scaling in the UV. Since there is a reduced symmetry group there are additional degrees of freedom, which need not decouple in the infra-red. Indeed, we use the Stuckelberg trick to show that one of these extra modes become strongly coupled as the parameters approach their desired infra-red fixed point. Whilst we can evade the first strong coupling problem by breaking detailed balance, we cannot avoid the second, whatever the form of the potential. Therefore the original Horava model, and its "phenomenologically viable" extensions do not have a perturbative General Relativity limit at any scale. Experiments which confirm the perturbative gravitational wave prediction of General Relativity, such as the cumulative shift of the periastron time of binary pulsars, will presumably rule out the theory.Comment: 11 page

    Phenotyping of ABCA4 Retinopathy by Machine Learning Analysis of Full-Field Electroretinography

    Get PDF
    PURPOSE: Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype–phenotype correlations. METHODS: International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. RESULTS: Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. CONCLUSIONS: This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance: Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies

    Abnormal visual attention to simple social stimuli in 4-month-old infants at high risk for Autism

    Get PDF
    Despite an increasing interest in detecting early signs of Autism Spectrum Disorders (ASD), the pathogenesis of the social impairments characterizing ASD is still largely unknown. Atypical visual attention to social stimuli is a potential early marker of the social and communicative deficits of ASD. Some authors hypothesized that such impairments are present from birth, leading to a decline in the subsequent typical functioning of the learning-mechanisms. Others suggested that these early deficits emerge during the transition from subcortically to cortically mediated mechanisms, happening around 2-3 months of age. The present study aimed to provide additional evidence on the origin of the early visual attention disturbance that seems to characterize infants at high risk (HR) for ASD. Four visual preference tasks were used to investigate social attention in 4-month-old HR, compared to low-risk (LR) infants of the same age. Visual attention differences between HR and LR infants emerged only for stimuli depicting a direct eye-gaze, compared to an adverted eye-gaze. Specifically, HR infants showed a significant visual preference for the direct eye-gaze stimulus compared to LR infants, which may indicate a delayed development of the visual preferences normally observed at birth in typically developing infants. No other differences were found between groups. Results are discussed in the light of the hypotheses on the origins of early social visual attention impairments in infants at risk for ASD
    • …
    corecore